Elliptic Schlesinger system and Painlevé VI

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schlesinger transformations for algebraic Painlevé VI solutions

Various Schlesinger transformations can be combined with a direct pull-back of a hypergeometric 2×2 system to obtainRS 4 -pullback transformations to isomonodromic 2× 2 Fuchsian systems with 4 singularities. The corresponding Painlevé VI solutions are algebraic functions, possibly in different orbits under Okamoto transformations. This paper demonstrates a direct computation of Schlesinger tran...

متن کامل

Elliptic Linear Problem for Calogero - Inozemtsev Model and Painlevé VI Equation

We introduce 3N × 3N Lax pair with spectral parameter for Calogero-Inozemtsev model. The one degree of freedom case appears to have 2 × 2 Lax representation. We derive it from the elliptic Gaudin model via some reduction procedure and prove algebraic integrability. This Lax pair provides elliptic linear problem for the Painlevé VI equation in elliptic form.

متن کامل

Painlevé VI , Rigid Tops and Reflection Equation

We show that the Painlevé VI equation has an equivalent form of the non-autonomous Zhukovsky-Volterra gyrostat. This system is a generalization of the Euler top in C 3 and include the additional constant gyrostat momentum. The quantization of its autonomous version is achieved by the reflection equation. The corresponding quadratic algebra generalizes the Sklyanin algebra. As by product we defi...

متن کامل

Schlesinger transformations for elliptic isomonodromic deformations

Schlesinger transformations are discrete monodromy preserving symmetry transformations of the classical Schlesinger system. Generalizing well-known results from the Riemann sphere we construct these transformations for isomonodromic deformations on genus one Riemann surfaces. Their action on the system’s tau-function is computed and we obtain an explicit expression for the ratio of the old and ...

متن کامل

On Discrete Painlevé Equations Associated with the Lattice Kdv Systems and the Painlevé Vi Equation

1 Abstract A new integrable nonautonomous nonlinear ordinary difference equation is presented which can be considered to be a discrete analogue of the Painlevé V equation. Its derivation is based on the similarity reduction on the two-dimensional lattice of integrable partial difference equations of KdV type. The new equation which is referred to as GDP (generalised discrete Painlevé equation) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2006

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/39/39/s05